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Abstract 
In conversation, people often use spatial relationships 

to describe their environment, e.g.,  “There is a desk in 
front of me and a doorway behind it”, and to issue 
directives, e.g., “Go around the desk and through the 
doorway.” In our research, we have been investigating 
the use of spatial relationships to establish a natural 
communication mechanism between people and robots, 
in particular, for novice users.  In this paper, the work on 
robot spatial relationships is combined with a multi-
modal robot interface developed at the Naval Research 
Lab. We show how linguistic spatial descriptions and 
other spatial information can be extracted from an 
evidence grid map and how this information can be used 
in a natural, human-robot dialog. 

1. Introduction 
In conversation, people often use spatial relationships 

to describe their environment, e.g.,  “There is a desk in 
front of me and a doorway behind it”, and to issue 
directives, e.g., “Go around the desk and through the 
doorway”.  Recent cognitive models suggest that people 
use these types of relative spatial concepts to perform 
day-to-day navigation tasks and other spatial reasoning 
[1,2], which may explain the importance of spatial 
language and how it developed. In our research, we have 
been investigating the use of spatial relationships to 
establish a natural communication mechanism between 
people and robots, in particular, striving for an intuitive 
interface that will be easy for novice users to understand.   

In previous work, Skubic et al developed two modes 
of human-robot communication that utilized spatial 
relationships. First, using sonar sensors on a mobile 
robot, a model of the environment was built, and a spatial 
description of that environment was generated, providing 
linguistic communication from the robot to the user [3]. 
Second, a hand-drawn map was sketched on a PDA, as a 
means of communicating a navigation task to a robot [4].  
The sketch, which represented an approximate map, was 
analyzed using spatial reasoning, and the navigation task 
was extracted as a sequence of spatial navigation states.  
In [5], the results of these two modes were compared for 
similar, but not exact environments, and found to agree. 

In this paper, robot spatial reasoning is combined 
with a multi-modal robot interface developed at the 
Naval Research Laboratory (NRL) [6,7]. Spatial 
information is extracted from an evidence grid map, in 
which information from multiple sensors is accumulated 
over time [8].  Probabilities of occupancy are computed 
for grid cells and used to generate a short-term map.  
This map is then filtered, processed, and segmented into 
environment objects.  Using linguistic spatial terms, a 
high-level spatial description is generated which 
describes the overall environment, and a detailed 
description is also generated for each object. In addition, 
a class of persistent objects has been created, in which 
objects are given locations in the map and are assigned 
labels provided by a user.  

The robot spatial reasoning and the NRL Natural 
Language Processing system are combined to provide the 
capability of natural human-robot dialogs using spatial 
language. For example, a user may ask the robot, “How 
many objects do you see?”  The robot responds, “I am 
sensing 5 objects.” The user continues, “What objects do 
you see?” The robot responds, “There are objects behind 
me and on my left.”  And the dialog continues. 

The paper is organized as follows. Section 2 provides 
an overview of the multi-modal interface. In Section 3, 
we discuss algorithms used to process the grid map and 
generate multi-level linguistic spatial descriptions.  
Section 4 discusses how the spatial language is used in an 
interactive dialog, and Section 5 provides conclusions. 

2. The Multi-Modal Interface  
Our research is based on previous work building a 

user-friendly multi-modal interface [6] for a team of 
dynamically autonomous [9] mobile robots (Figure 1).  
The interface allows the user to concentrate on the task at 
hand, rather than on the interaction modality.  Users are 
allowed to choose freely and combine various modes for 
inputting commands and queries, including speech, 
gestures, and personal electronic devices.  To achieve an 
intuitive interaction similar to communication with other 
humans, the interface should also support commands and 
spatial references such as “Follow that wall” or “Stop at 
the doorway on your left.” 



         
 
 
 
Gestures occur frequently with natural language; 

some of these gestures provide crucial information to 
spoken commands, such as gesturing in a direction when 
someone says, "Go over there."  Gestures are given to the 
robot through arm movements in a particular direction, or 
toward a particular location.  These so-called natural 
gestures are coupled with spoken commands to clarify an 
otherwise ambiguous directive. 

In addition to issuing verbal commands (with or 
without gestures), the user can also interact with the 
robots through a Personal Digital Assistant (PDA) 
(Figure 2).  Discrete commands can be issued through 
menu buttons, or the operator can use synthetic gestures 
by pointing to coordinates on the PDA screen, or by 
dragging a stylus on a mapped representation of the area.  

The underlying goal of the research is to make robots 
capable of interacting freely with each other and with 
human users, at levels of autonomy that are dictated by 
the goals, interactions, and changing situations.  To 
facilitate dynamically changing levels of autonomy, the 
status of goals is recorded in a structure known as a 
context predicate [9]. This structure allows the robots to 
re-assess the situation while carrying out goals, e.g., re-
assessing spatial relationships in the environment. 

For example, a user may issue a command to the 
robot named Coyote, by speaking “Coyote, go over 
there”. The command is parsed and a context predicate is 
constructed as a list (shown as the second element in (1)). 
After another command is given, “Coyote, back up this 
far,” the second directive is stacked onto the previous 
element, as shown in (1). Thus, a context predicate is a 
stack of lists, containing semantic information obtained 
during the parsing of a series of commands or queries.   

 

    ((((imper: back-direction: back)                        (1) 
                       (agent: system: coyote) 
                       (goal: direction: far) 
              (goal-state: incomplete))) 
           ((imper: go-direction: go 
                        (agent: system: coyote) 
                        (goal: location: there) 
                        (goal-state: complete)))) 
 

The context predicate also contains information about 
the status of the goals; i.e., whether or not they have been 
achieved.  Any of the participating agents in the dialog 

can check the context predicate to see which goals have 
not been completed and act on them if needed.  The 
information in the stack is updated based on the status of 
goals, the existing context, and the focus of the dialog. 

Given the various means of inputting commands and 
queries, and the creation of a context predicate, once the 
human user issues a command, the user can then redirect 
his/her attention to other matters, and the robots can go 
about their business without having to interrupt the user 
for additional information. Figure 2. A Palm Pilot 

Personal Digital Assistant 
Figure 1. A Nomad 200 and 
an RWI ATRV  Since many of the commands involved spatial 

references, or required a priori knowledge of objects and 
their locations in the immediate environment, we 
introduced a spatial relations component.  With the 
information of this component, we can augment the 
spatial information available to the various agents in the 
human-robot dialog and can reason about locations and 
objects in the environment. 

3. Generating Spatial Language from Occupancy 
Grid Maps 

The map structure used in this work is an evidence 
grid map [8].  The indoor environment shown in this 
paper is represented with a 128 x 128 x 1 cell grid, 
providing a two-dimensional map of the NRL lab. One 
cell covers approximately 11cm x 11 cm. Information 
from the robot sensors is accumulated over time to 
calculate probabilities of occupancy for each grid cell. 
One byte is used to store occupancy probabilities; values 
range from +127 (high probability of occupancy) to -127 
(high probability of no occupancy), with 0 representing 
an unknown occupancy. For the work reported here, 
these maps are the sensor-fused short-term maps 
generated by the robot’s regular localization and 
navigation system [10]. Examples of evidence grid maps 
are shown in Figures 3(a) and 4(a).  For our purposes, a 
cell with an occupancy value ≥ +1 is considered to be 
occupied and is shown in black.  All other cells are 
shown in white. 

The evidence grid map is pre-processed with a 
sequence of operations, similar to those used for image 
processing, to segment the map into individual objects.  
First, a filter is applied through a convolution operation. 
A 3x3 matrix, shown below in (2), is used as the 
convolution kernel, K, to provide a linear filter of the 
map. 
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This has the effect of blurring the map, filtering single 
cells and filling in some disconnected regions, as shown 
in Figure 3(b).   

An explicit fill operation is also used to further fill in 
vacant regions.  For each unoccupied cell, if 5 or more of 



its neighbors are occupied, then the cell status is changed 
to occupied.   Eight neighbors are considered, as shown 
below in (3) for cell ai,j : 
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Two passes of the fill operation are executed.  Results are 
shown in Figure 3(c). 

Finally, spurs are removed. A spur is considered to be 
an occupied cell with only one occupied neighbor in the 
four main directions (diagonal neighbors are not 
counted). All spurs, including those with a one-cell 
length, are removed.  At this point, the final cell 
occupancy has been computed for object segmentation. 
Objects should be separated by at least a one-cell width. 

Next, objects are labeled and loaded into a data 
structure for spatial reasoning.  A recursive function is 
used to label adjacent cells. Occupied cells are initially 
given numeric labels for uniqueness, e.g., object #1, 
object #2.  Once the cells are labeled, a recursive contour 
algorithm is used to identify the boundary of the objects.  
The contour is important in that it provides a 
representation of the environment obstacles that is used 
for spatial reasoning. Examples of the final segmented 
objects, with their identified contours, are shown in 
Figures 3(d) and 4(b). 

Spatial reasoning is accomplished using the 
histogram of forces [11], as described in previous work 
[3,4,5,12]. For each object, two histograms are computed 
(the histograms of constant forces and gravitational 
forces), which represent the relative spatial position 
between that object and the robot. Computationally, each 
histogram is the resultant of elementary forces in support 
of the proposition object #i is in direction θ of the robot. 
For fast computation, a boundary representation is used 
to compute the histograms. The robot contour is 
approximated with a rectangular bounding box. The 
object boundaries are taken from the contours of the 
segmented objects in the grid map. 

The two histograms give different views of the 
environment; the histogram of constant forces provides a 
global view and the histogram of gravitational forces 
provides a local view. Features from the histograms are 
extracted and input into a system of fuzzy rules to 
generate a three-part linguistic spatial description: (1) a 
primary direction (the object is in front), (2) a secondary 
direction which acts as a linguistic hedge (but somewhat 
to the right), and (3) an assessment of the description (the 
description is satisfactory). A fourth part describes the 
Euclidean distance between the object and robot (the 
object  is  close).  In addition, a  high level description  is 
generated that describes the overall environment with 
respect to the robot. This is accomplished by grouping 
the objects into 16 (overlapping) regions  located  around 

  (a) 

  (b) 

  (c) 

  (d) 
 

Figure 3. (a) The southeast part of the evidence grid 
map.  Occupied cells are shown in black.  (b) The 
result of the filter operation. (c) The result of the fill 
operation (d) The segmented, labeled map.  
Physically, object #1 corresponds to a section of desks 
and chairs, object#2 is a file cabinet, and object #3 is a 
pillar. 



the robot.  An example of the generated descriptions is 
shown in Figure 4(c). See [3,4,5] and especially [12] for 
additional details. 
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4. Integrating Spatial Language into Human-
Robot Dialog 

The robot control system has been implemented as a 
distributed system with components for path planning, 
map processing, localization, navigation, and handling 
the various interface modalities (PDA, gesture, and 
speech input). The spatial reasoning capabilities have 
been integrated into this environment in the form of a 
server so that any client can request the spatial 
description of the environment at any given time.  

As the descriptions are generated, information is also 
stored on the relative spatial positions of the environment 
objects to facilitate a meaningful dialog with the robot. 
From the histogram computation, each object is assigned 
a primary direction. The 16 possible primary directions 
situated around the robot are illustrated in Figure 5(a), 
with examples of the corresponding linguistic 
descriptions.  For each object, the primary direction is 
mapped to a set of 8 regions around the robot (front, rear, 
left, right, and the diagonals), which are used for queries.  
Two examples are shown in Figure 5(b). An object in 
any of the 5 light gray directions is considered to be in 
front of the robot.  An object in any of the 3 dark gray 
directions is considered to be to the right rear.  Thus, an 
object that is to the right front (see Figure 5(a)) would be 
retrieved in queries for three regions: the front, the right, 
and the right front of the robot. 

Object is mostly in front
but somewhat to the left

Object is mostly to the left
but somewhat forward

front

robot

Object is to the right

Object is to the right front
Object is mostly in front
but somewhat to the left

Object is mostly to the left
but somewhat forward

front

robot

Object is to the right

Object is to the right front

.

(a) 

Directions considered
for front

Directions considered 
for right rear

front

robot

Directions considered
for front

Directions considered 
for right rear

front

robot
(b) 

Figure 5.  Sixteen primary directions are situated 
around the robot (the small circles). The 8 cone-
shaped sections represent the 8 basic regions (front, 
                                                                         

DETAILED SPATIAL DESCRIPTIONS: 
The #1 object is to the right-front of me 
- 
(the description is satisfactory) 
The object is close. 
 

The #2 object is to the right of me 
- 
(the description is satisfactory) 
The object is very close. 
 

The #3 object is in front of me 
- 
(the description is satisfactory) 
The object is close. 
 

The #4 object is mostly in front of me 
but somewhat to the right 
(the description is satisfactory) 
The object is close. 
 

HIGH LEVEL DESCRIPTION: 
There are objects in front of me and on my right
e 4.  (a) A robot situated in the grid map.  (b) 
segmented, labeled map. (c) The generated 
iptions. Note the robot heading.  Object#2 
sponds to the same pillar in Figure 3(d). 

rear, left, right, and diagonals). (a) Examples of the 
corresponding linguistic descriptions. (b) Examples 
used for queries. An object is considered to be in front 
of the robot if it occupies one of the 5 light gray 
primary directions. Diagonal directions such as right 
rear comprise only 3 primary directions (dark gray). 



With this spatial information and linguistic 
descriptions, we can now establish a dialog using spatial 
language. Queries can be made with the 8 basic regions 
illustrated in Figure 5.  Consider the scene in Figure 4 for 
the dialog below. Note that the user has all of the 
interface modalities available and can view the graphical 
display of the scene while talking to the robot. The robot 
responds using synthesized speech output [13]. 

 
User: “How many objects do you see?” 
Robot: “I am sensing 4 objects.”  
User: “What objects do you see?” 
Robot: “There are objects in front of me and on my 

right.”   
User: “Where is the nearest object on your right 

front?”   
Robot: “The #4 object is mostly in front of me but 

somewhat to the right.  The object is close.” 
User: “Where is the nearest object in any direction?” 
Robot: “The #2 object is to the right of me. The object 

is very close.”  
User: “Where is the nearest object on your left?” 
Robot: “I am not sensing any objects in that direction.” 

 
Motion directives can also be given using spatial 

language, as shown in the dialog below: 
 

User: “Go to the nearest object in front of you.”  
Robot: “Looking for the nearest object in front of me.”  

“I found it.  Going to the object.” 
 
We have also defined a class of persistent objects that 

have a designated location and are assigned a label by the 
user.  Persistent objects are created from the objects 
identified in the grid map, through a dialog with the 
robot.  For example, consider the scene in Figure 6. 
 
User:  “Where is the nearest object in front of you?” 
Robot: “The #2 object is mostly in front of me but 

somewhat to the left.  The object is close.” 
User: “The #2 object is a pillar.” 
Robot: “I now know that the #2 object is a pillar.  The 

pillar is mostly in front of me but somewhat to 
the left. The object is close.” 

 
As the robot moves around the environment, it 

remembers where the pillar is and will continue to 
generate spatial information about the pillar.  For the 
scene in Figure 7, three objects have been identified from 
the grid map; the cells occupied by the pillar are also 
shown in the figure.  The user can now establish a dialog 
using the defined object. 
 
User: “Where is the pillar?” 
Robot: “The pillar is mostly in front of me but 

somewhat to the right. The object is very close.” 

  (a) 

 

 

 

 

 

 

 

 

 

                                                                                   (b) 
Figure 6.  Creating persistent objects. (a) The robot 
situated in the segmented map. (b) The generated 
descriptions before defining the “pillar”.  

DETAILED SPATIAL DESCRIPTIONS: 
The #1 object is mostly to the left of me 
but somewhat forward 
(the description is satisfactory) 
The object is close. 
 

The #2 object is mostly in front of me 
but somewhat to the left 
(the description is satisfactory) 
The object is close. 
 

I am surrounded from the rear 
(surrounded by the #3 object). 
The object is very close. 
 

The #4 object is mostly to the left of me 
but somewhat forward 
(the description is satisfactory) 
The object is close. 
 

HIGH LEVEL DESCRIPTION: 
There are objects on my front left. 
I am surrounded from the rear. 

 

Physically, the pillar and object #3 are the same 
although they do not occupy exactly the same grid cells.  
Note, however, that the description of both object #3 and 
the pillar, as shown in Figure 7(b), are exactly the same.  
In future work, we will explore algorithms for connecting 
persistent objects with those identified dynamically from 
the grid map. 

Figure 6 also shows an example of the surrounded 
relation, which provides capabilities of high level spatial 
reasoning.  In [12], we introduce 3 levels of surrounded 
based on the width of the force histograms, e.g., (1) I am 
surrounded on the right, (2) I am surrounded with an 
opening on the left, and (3) I am surrounded. 

5. Concluding Remarks 
In this paper, we showed how an evidence grid map 

is processed so that linguistic expressions can be 
generated to describe the environment with respect to a 
robot. Also, we showed how spatial language can be 
integrated into a multi-modal robot interface to provide 



capabilities for a natural, human-robot dialog. The work 
thus far illustrates further questions that need to be 
addressed, e.g., what is the most useful spatial language 
needed for a dialog, and what is the best frame of 
reference for different types of tasks. 

In the future, we intend to address these problems. 
We also want to explore the use of spatial information in 
robot behaviors, to facilitate directives with respect to 
objects in the environment, e.g., “Move forward until the 
pillar is behind you”.  We will also explore the concept 
of unoccupied spatial regions, which can be used in 
commands such as “Go to the left of the pillar” or “Go 
around the pillar”.  This continued work in supporting 
and developing spatial language contributes to the 
natural, multi-modal human-robot interface. 

  (a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                                                (b) 
 

Figure 7. (a) The scene from Figure 3 with the 
persistent object “pillar”.  (b) The generated detailed 
descriptions. 
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